

FOREWORD

This is a pivotal time in the history of the Ministry of Education and Technical Education (MOETE) in Egypt. We are embarking on the transformation of Egypt's K-12 education system starting in September 2018 with KG1, KG2 and Primary 1 continuing to be rolled out year after year until 2030. We are transforming the way in which students learn to prepare Egypt's youth to succeed in a future world that we cannot entirely imagine.

MOETE is very proud to present this new series of textbooks, Discover, with the accompanying digital learning materials that captures its vision of the transformation journey. This is the result of much consultation, much thought and a lot of work. We have drawn on the best expertise and experience from national and international organizations and education professionals to support us in translating our vision into an innovative national curriculum framework and exciting and inspiring print and digital learning materials.

The MOETE extends its deep appreciation to its own " Central Administration for Curriculum Development " (CACD) and " Discovery Education".

This transformation of Egypt's education system would not have been possible without the significant support of Egypt's current president, His Excellency President Abdel Fattah el-Sisi. Overhauling the education system is part of the president's vision of 'rebuilding the Egyptian citizen' and it is closely coordinated with the ministries of higher education $\&$ scientific research, Culture, and Youth $\&$ Sports. Education 2.0 is only a part in a bigger national effort to propel Egypt to the ranks of developed countries and to ensure a great future to all of its citizens.

WORDS FROM THE MINISTER OF EDUCATION $\&$ TECHNICAL EDUCATION

It is my great pleasure to celebrate this extraordinary moment in the history of Egypt where we launch a new education system designed to prepare a new Egyptian citizen proud of his Egyptian, Arab and African roots - a new citizen who is innovative, a critical thinker, able to understand and accept differences, competent in knowledge and life skills, able to learn for life and able to compete globally.

Egypt chose to invest in its new generations through building a transformative and modern education system consistent with international quality benchmarks. The new education system is designed to help our children and grandchildren enjoy a better future and to propel Egypt to the ranks of advanced countries in the near future.

The fulfillment of the Egyptian dream of transformation is indeed a joint responsibility among all of us; governmental institutions, parents, civil society, private sector and media. Here, I would like to acknowledge the critical role of our beloved teachers who are the role models for our children and who are the cornerstone of the intended transformation.

I ask everyone of us to join hands towards this noble goal of transforming Egypt through education in order to restore Egyptian excellence, leadership and great civilization.

My warmest regards to our children who will begin this journey and my deepest respect and gratitude to our great teachers.

Dr. Reda Hegazy
 Minister of Education \& Technical Education

Contents

	Chapter 1
Lesson 1: Patterns	2
Lesson 2: More of Bar Graphs	3
Lesson 3: Line Plot	5
Lesson 4: Measuring Lengths in Centimeter	6
Lesson 5: Measuring Lengths in Meter	8
Lesson 6: Measuring Lengths in Millimeter	10
Lesson 1: Thousands	11
Lesson 2: More of Thousands	13
Lesson 3: Ten Thousands - Hundred Thousands	15
Lesson4: Numbers in Different Forms	17
Lesson 5: Arrays	18
Lesson 6: Multiplication	21
Lesson 7: Commutative Property in Multiplication	23

Chapter 3

Lesson 1: Word Problems in Multiplication 26
Lesson 2: Applications on Multiplication 28

Lesson 3: Multiples of 2 \& 39
Lesson 4: Multiples of 5 \& 10
Lesson 5: Factors of a Number Using Arrays 33
Lesson 6: Time 34
Lesson 7: Applications on Time 35
Lesson 8: Division 37
Lesson 9: Applications on Division 40
Lesson 10: The Relation Between Multiplication
and Division

Lesson 1: Polygons	44
Lesson 2: Properties of Quadrilaterals	46
Lesson 3: Area	49
Lesson 4: Rectangles With Equal Area	51
Lesson 5: Area Using Models	54
Lesson 6: Area By Splitting Arrays	58
Lesson 7: Distributive Property on Multiplication	59
- Chapter 5	
Lesson 1: Perimeter of Polygons	62
Lesson 2: Perimeter and Area	64
Lesson 3: Area Using The Dimensions	67
Lesson 4: Area Using Different Strategies	69
Lesson 5: Different Perimeters for The Same Area	72
Lesson 6: Different Areas for The Same Perimeter	75
Lesson 7: Applications on Perimeter and Area	77
Lesson 8: Multiplying by Multiples of 10	80
- Chapter 6	
Lesson 1: Patterns of Multiplying by Multiples of 10	83
Lesson 2: Strategies of Multiplying by 9	86
Lesson 3: Facts on Multiplication and Addition	90
Lesson 4: Comparing and Ordering Numbers in	
Different Forms	93
Lesson 5: Addition Strategies	95
Lesson 6: Subtraction Strategies	97
Lesson 7: Applications on Addition and Subtraction	
	98
Lesson 8: Capacity	102
Lesson 9: Reading Capacity	104

Lesson 2: Properties of Quadrilaterals 46 49
Chapter 5Lesson 2: Perimeter and Area64
Lesson 3: Area Using The Dimensions 67Lesson 5: Different Perimeters for The Same Area 72Lesson 6: Different Areas for The Same Perimeter 75Lesson 8: Multiplying by Multiples of 1080Lesson 2: Strategies of Multiplying by 986
Lesson 3: Facts on Multiplication and Addition 90
Different Forms 93Lesson6:Subtraction Strateg97
Lesson 7: Applications on Addition and Subtraction 98
Lesson 9: Reading Capacity 104

CONNECT LESSON 1: PATTERNS

Pattern Problem 1

Pattern Problem 2
$30,40,50,60,70$, \qquad , \qquad
\qquad

Pattern Problem 3

52, 54, 56, 58, \qquad
\qquad
\qquad
\qquad

Pattern Problem 4

APP LESSON 2: MORE OF BAR GRAPHS

Directions: Look at each dot image. Build each image using counters. What is the pattern? Figure out the next two images in the pattern. Build them and then draw them in the boxes.

\square

Image FIVE

CHALLENGE: Record the number of counters in each image. How could you predict how many counters would be in the 10th image?

LESSON 2: MORE OF BAR GRAPHS

Directions: Make a bar graph using the sibling data. Be sure to include a title, labels for each axis, and colored bars.

CHALLENGE: If we invited all of the siblings to visit, how many people would come?

REFLECT

Directions: Reflect on your learning. Write two questions that could be answered by looking at the data in your Sibling Bar Graph.

1. \qquad
2. \qquad

LESSON 3: LINE PLOT

Directions: Create a line plot using the beans in bag data. Be sure to give your line plot a title and a key.

CHALLENGE: If we dumped all the bags that had the most beans onto the table, how many beans would we have on the table?

REFLECT

Directions: Reflect on your learning. In the box below, write about bar graphs, pictographs, and line plots.

- How are these types of graphs the same?
- How are these types of graphs different?
- Which do you prefer? Why?
\square

LESSON 4: MEASURING LENGTHS IN CENTIMETER

Length of a Primary 3 Student's Hand from Wrist to Middle Finger

Length of hand in centimeters

$$
\text { X = } 1 \text { student }
$$

LESSON 5: APPLY

Directions: Measure the pieces of string and record their lengths in centimeters.

String Number	Length in cm
1	
2	
3	
4	
5	

Order the lengths (in centimeters) from shortest to longest:

REFLECT

Directions: Reflect on your learning. In the box below, answer the following question.

- Where do you use measurement in the world outside of math class?

LESSON 5: MEASURING LENGTHS IN METER

Directions: Look at the images below. Decide if the objects they depict should be measured in centimeters or meters and then write the word in the table.

IMAGES	METERS OR CENTIMETERS?

CHALLENGE: Name at least three other objects that could be measured in centimeters and at least three other objects that could be measured in meters.

Could be measured in cm	Could be measured in m

REFLECT

Directions. Reflect on your learning. Then write or draw your answers to the following questions in the box below:

- When might it be okay to estimate a length?
- When would you need an exact measurement?

LESSON 8: APPLY
Directions: Measure the pieces of string and record their lengths in millimeters.

String Number	Length in mm
1	
2	
3	
4	
5	

LESSON 1 : THOUSANDS

Directions: Flip over a card and write the digit in a place value box. You may use the Discard box once. Once you write a digit in place, you may not move it. After you have filled all five boxes, compare your numbers with your friends.

Goal: Make the greatest number in your group.

Practice Round:

Round 1:

Round 2:

Round 3:

Thousands

Hundreds

Round 4:

REFLECT
Directions: Reflect on your learning. Think about a strategy you used to create the greatest number in the Place Value Game. Explain your strategy in the box below.
\square

Directions: Follow the directions in each step below.

Step 1: Choose a number in the thousands and write it below.

Step 2: Draw a model of the number in the place value mat below.

Thousands	Hundreds	Tens	Ones 9

Step 3: Write your number in expanded form. Remember to use the addition and equal signs:

Step 4: Compare your number to three other students' numbers using the greater than (>) or less than (<) sign.

YOUR NUMBER	$>$ OR <	OTHER STUDENT'S NUMBER

CHALLENGE: Fill in the blanks with either > or < .

1. 8,903 \qquad 9,038
2. 7,878 \qquad 7,787
3. 1,342

1,302
4. 2,345 \qquad 2,344
5. 6,534 \qquad 6,544

Order the numbers above from least to greatest.
\qquad
\qquad ; \qquad ; \qquad ; \qquad
\qquad
\qquad
; \qquad ; \qquad ;

Directions: Flip over a card and write the digit in a place value box. You may use the Discard box once. Once you write a digit in place, you may not move it. After you have filled all six boxes, compare your numbers with your friends.

Goal: Make the smallest number in your group.

Round 1:

Round 2 :

Hundred Thousands	Ten Thousands	Thousands			
				Hundreds Tens Ones 	

Round 3:

Hundred Thousands	Ten Thousands	Thousands		

Discard

Round 4:

| Hundred
 Thousands | Ten
 Thousands | Thousands | |
| :---: | :---: | :---: | :---: | :---: |
| | | | |
| | | | |

REFLECT
Directions: Reflect on your learning. What strategies do you use to compare really big numbers? Write about them below.
\square

LESSON4: NUMBERS IN DIFFERENT FORMS

Directions: Write each number in expanded form. Then practice reading each number in standard and expanded form (whisper).

62,319 = \qquad

762,319 = \qquad
$15,780=$ \qquad
$812,004=$ \qquad

Write your own really big numbers in standard form and then write them in expanded form.
\qquad $=$ \qquad

Now order all the numbers you have above. Decide whether you want to order them from least to greatest or greatest to least.
\qquad ; \qquad ; \qquad ; \qquad ; \qquad ; \qquad

LESSON 5: ARRAYS

Directions: Look at each star array and record the number of ROWS and the number of stars in each ROW. Then find the total number of stars.
1.

Number of rows: \qquad
Number of stars in each row: \qquad

Total number of stars: \qquad
3.

Number of rows: \qquad
Number of stars in each row: \qquad

Total number of stars: \qquad
2.

Number of rows: \qquad
Number of stars in each row: \qquad

Total number of stars: \qquad
4.

Number of rows: \qquad
Number of stars in each row: \qquad

Total number of stars: \qquad

LESSON 16: APPLY, continued

Directions: Look at each star array and record the number of COLUMNS and the number of stars in each COLUMN. Then find the total number of stars.

5.

Number of column: \qquad
Number of stars in each column: \qquad
Total number of stars: \qquad
7.

Number of column: \qquad
Number of stars in each column: \qquad
Total number of stars: \qquad
6.

Number of column: \qquad
Number of stars in each column: \qquad
Total number of stars: \qquad
8.

Number of column: \qquad
Number of stars in each column: \qquad
Total number of stars: \qquad

REFLECT

Directions: Look at the star array below. Some of the stars have been ripped off. How many stars were in the original array? Explain your thinking using pictures, numbers, or words in the box below the star array.

LESSON 6: MULTIPLICATION

Directions: In each box, play a round of Circles and Dots. Roll the die one time to identify the number of circles you will draw. Roll it again to identify how many dots you will draw in each circle. Once you have drawn your models, record a repeated addition equation and a multiplication equation. Then compare your product with your partner's using < , >, or =. See the example below.

Round One:

Repeated Addition (+)
Multiplication (×)

Comparison \qquad
(My product)
 (Partner's product)

| Round Two: |
| :--- | :--- |
| Repeated Addition (+) |
| Multiplication (\times) |
| Comparison |
| (My product) |

Round Four:

Repeated Addition (+)
Multiplication (×)

Comparison
(My product)

CHALLENGE: Draw a Circles and Dots board for the following equations and then find the product:
$5 \times 7=$
$6 \times 9=$

Directions: Solve the problems below to determine whether or not there is a Commutative Property of Multiplication.

Number of rows: \qquad

Number of columns: \qquad
Total number of triangles: \qquad
Number of rows: \qquad

Number of columns: \qquad
Total number of triangles: \qquad
\qquad
\qquad $=$ \qquad
rows columns product
\qquad
\qquad
\qquad
rows
columns
product

Number of rows: \qquad
Number of columns: \qquad
Total number of hearts: \qquad
Number of rows: \qquad
Number of columns: \qquad
Total number of hearts: \qquad

otal number of hearts:

APPLY, Part 1 continued

Number of circles: \qquad
Number of dots: \qquad
Number of dots: \qquad
Total number of dots: \qquad Total number of dots: \qquad
\qquad
\qquad $=$

Number of circles: \qquad
\qquad
\qquad $=$ \qquad
$\overline{\text { circles }} \quad \begin{aligned} & \text { dots } \\ & \text { product }\end{aligned}$

Number of circles: \qquad
Number of circles: \qquad
Number of dots: \qquad
Total number of dots: \qquad

Number of dots: \qquad
Total number of dots: \qquad

APPLY, Part 2
Directions: On the grids below, draw arrays that prove the Commutative Property of Multiplication. Label your grids with the factors (the two numbers you are multiplying) and products (the answers).
1.

2.

3.

REFLECT

Directions: Reflect on your learning. In the box below, explain multiplication and the Commutative Property of Multiplication. You can use words, pictures, or numbers to help you.

LESSON 1 : WORD PROBLEMS IN MULTIPLICATION

Example problem: Farha went to the store to buy rolls for a big family dinner. At the store, she bought 4 bags of rolls. Each bag contained 5 rolls. How many rolls did Farha buy?

Work Space:

Multiplication equation:

PRACTICE:

- Read each problem carefully.
- Show your thinking with pictures, numbers, or words.
- Record a multiplication equation that represents this problem.

1. On Samira's walk home she saw 6 cars. If each car has 4 wheels, how many wheels did she see in all?

Work Space:

Multiplication equation: \qquad
2. Manal brought 6 bags of cookies to school. Each bag had 3 cookies in it. How many cookies were there all together?

Work Space:

Multiplication equation:
3. Malek runs 3 miles each day. How many miles does he run in 7 days?

Work Space:

Multiplication equation: \qquad
4. A bag of oranges holds 4 oranges. How many oranges are in 8 bags?

Work Space:

Multiplication equation: \qquad
5. It takes a rocket 7 seconds to travel one kilometer. How many seconds will it take to travel 4 kilometers?

Work Space:

Multiplication equation: \qquad
6. Each pack of pencils contains 8 pencils. How many pencils are in 3 packs?

Work Space:

Multiplication equation: \qquad

CHALLENGE:

1. Put the products from problems 1 to 6 above in order from least to greatest.
2. Maisa was trying to figure out how to solve the multiplication problem 12×13 but was stuck. Can you show her how to work through this problem and what the product might be?

LESSON 2: APPLICATIONS ON MULTIPLICATION

Directions: Read each story problem on your own. With a partner, match each story problem to its multiplication equation.

Part 1

Mariam had 4 sweaters. Each sweater had 3 buttons on it. How many total buttons are there on all the sweaters?

Rana packed 6 boxes full of cans. Each box had 6 cans.
How many total cans did Rana pack?
Amir hiked for 3 days over the summer. Each day he hiked $4 \times 3=12$ 7 miles. How many miles did he hike in all?

Part 2

Record your equation here:
Write a story problem that matches the equation above.

When you finish, find a partner with the same card. Work together to find the product. Product: \qquad
How did you solve this problem? Show your work below:

REFLECT

Directions: Reflect on your learning. Write a response to the questions in the box below.

- Think about multiplication story problems. Is it easier to solve them or write one?
- What do you think is easy about solving multiplication story problems?
- What do you still find challenging about solving multiplication story problems?

LESSON 3: MULTIPLES OF 2 \& 3

Directions: Use the 120 Chart below to complete the following:

- Color the multiples of 2 \qquad (color stated by teacher).
- Color the multiples of 3 \qquad (color stated by teacher).
- Respond to the prompts at the bottom of the page.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

List the first 10 multiples of 2.

List the first 10 multiples of 3 .
\qquad
\qquad , \qquad

List all of the multiples you found that 2 and 3 share:

LESSON 4: MULTIPLES OF 5 \& 10

Directions: Use the 120 Chart to complete the following:

- Color the multiples of 10 \qquad (color stated by teacher).

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Write the equations for the multiples of ten. The first two have been done for you.

10×1	$=10$
10×2	$=20$
10×3	$=$
10×4	$=$
$10 \times$	$=$
$10 \times$	

$10 \times \ldots$	$=$
$10 \times$	$=$
$10 \times$	

APPLY, continued

Directions: Use the 120 Chart on the previous page to complete the following:

- Color the multiples of 5 \qquad (color stated by teacher).
- Write the equations for the multiples of five. The first two have been done for you.

$5 \times=$ \qquad
$5 \times$

$5 \times$ \qquad

LESSON 5: FACTORS OF A NUMBER USING ARRAYS
Reflect
1- If we have 6 seats, what is the number of different arrays can be created?
2- Use the arrays to find al the pairs of factors for the numbers: 6, 12 and 24
\square

LESSON 7: APPLICATIONS ON TIME

Picture \#1:

Picture \#2:

Group Practice:

Clock One

Hour
\qquad

Clock Two
Hour
Minutes
\qquad

PARTNER PRACTICE:

Directions: Look at each of the clocks below. Determine the time on the analog clock and write the digital time below. Remember that each hour number represents a group of 5 minutes.

\qquad : \qquad

LESSON 27: APPLY

Directions: Play "Who Has the Later Time?" with your Shoulder Partner.

- Pick a card to tell you how many groups of 5 minutes have passed.
- Record the minutes on the digital clock. The hour is already decided for you.
- Draw the minute hand on the analog clock.

Round One:

\qquad 1 : : \qquad
2 : \qquad

\qquad
$7:$ \qquad

Round Three:

\qquad 4 : $:$

Round Five:

\qquad 10 : \qquad

CHALLENGE: Time Story Problems

1. Your mom puts muffins in the oven at 7:00. When you take them out, the clock looks like this:

How many minutes did it take to bake the muffins?

2. You leave school at 3:00 and when you get home the clock looks like this:

How many minutes did it take you to walk home?

3. If it takes you 45 minutes to walk home from school and you leave at 3:00, what time will it be when you get home? Draw the time on the clock.

REFLECT

Directions: Reflect on what you have learned about telling time. Look at the analog clock below and the time that is recorded on the digital clock. Decide if the digital time is correct for the clock shown. If it is, explain why. If it is not, explain why and provide the correct time. Write your response in the box below.

LESSON 8: DIVISION

Directions: Solve the sharing problems below.

1. There are 16 fish that need to be placed in 4 bowls. Each bowl must hold the same number of fish. How many fish should be put into each bowl? Draw a picture in the bowls below to solve the problem.

Draw a part-part-whole model in the box below to show your answer.

2. Sameh is preparing gift baskets. He has 20 oranges that need to be divided equally between 5 baskets. Draw a picture in the baskets below to solve the problem.

Draw a part-part-whole model in the box below to show your answer.
\square

3. The teacher has 36 crayons to share equally between 6 students. She must place the crayons in the cups below. Draw a picture in the cups below to solve the problem.

Draw a part-part-whole model in the box below to show your answer.
\square

REFLECT

Directions: Reflect on your learning. In the box below, write a sharing story problem using the numbers 15 and 3 . Then solve the problem and show your work with both a picture and a part-part-whole model.
\square

LESSON 9: APPLICATIONS ON DIVISION

Example \#1:

Directions: Draw a mathematical picture to solve.

Each cat needs 2 fish for lunch. How many cats can we feed with 12 fish?

\square

Directions: Solve the following grouping problems to figure out how many animals can eat. You can use counters to help you. Please draw and show all of your work.

1. Each ibis will eat 3 worms. You have 18 worms. How many ibis can be fed?

2. Each jackal must eat 6 insects. There are 24 insects. How many jackals can be fed?

3. Each crocodile wants to eat 5 fish. There are 25 fish. How many crocodiles can be fed?

4. Each bull eats 2 bales of hay each day. There are 100 bales. How many bulls can be fed each day?

LESSON 10: THE RELATION BETWEEN MULTIPLICATION AND DIVISION

Directions: Find the missing factor in the triangles below. Then write the four equations that go with the fact family. Use the counters to help you.

\qquad

\qquad
\qquad
\qquad
\qquad

CHALLENGE: Describe each of these arrays using one multiplication equation and one division equation.

Draw and write your own array with two connected multiplication and division problems.

CHAPTER 4

LESSON 1 : POLYGONS

APPLY

Directions: Do the following.
First, name each shape with your partner.

- Then sort the shapes below into categories.
- Label each category.
- Write the number of the shape that belongs in the category or draw it.

Category Title: Four Vertices	Category Title:
Square	
Rectangle	Category Title:
Category Title:	
Category Title:	

CHALLENGE:

Write a list of attributes for one of the shapes below. Not all of these are polygons.

Could any of these shapes fit into one of your categories from above? Explain.

REFLECT

Directions: Reflect on your learning. In your own words, explain what a polygon is. Draw two examples. Then, in your own words, explain what a parallelogram is. Draw two examples.
\square CONNECT

These are trapeziums.
These are not trapeziums.

Directions: Write a definition of a trapezium in your own words. Compare your definition with a partner's.

APPLY

Directions: Tear out this page and cut out quadrilaterals to use for your quadrilateral image.

APPLY, continued
Directions: Once your picture is complete, fill out the bar graph below.

TYPES OF SHAPES

REFLECT

Directions: Reflect on your learning. Write two statements about the data in your bar graph. Then write one question that could be answered using your graph.

LESSON 3: AREA

CONNECT

Directions: Look at the puzzle below. How many rectangles can you find? You may color or number them (or use another method) to help you keep track.

APPLY

Directions: Determine the area of each rectangle. Explain the strategy you used in the work space provided next to each shape and record the answer.

Rectangle \#1:

Rectangle \#2:

Total area $=$ \qquad square units

Rectangle \#3:

Total area = \qquad square units

Work Space

Rectangle \#4:

Rectangle \#5:

Rectangle \#4:

Total area = \qquad square units

Rectangle \#5:

Total area = \qquad square units

Rectangle \#6:

Total area = \qquad square units

CHALLENGE:

These gardens are not rectangular. Can you find the area anyway? Show your thinking.

Work Space
Problem 1:

Problem 1:

Total area = \qquad square units

Rectangle \#2:

Rectangle \#2:

Total area = \qquad square units

LESSON 4: RECTANGLES WITH EQUAL AREA

CONNECT

Directions: Solve the following problem: Mohammad makes a drawing with 5 squares. Mona makes the same drawing but uses triangles. It takes 2 triangles to make a square. How many triangles does Mona draw?

Show your work in the box below.
\square

APPLY

Directions: On the grid below, draw and label as many rectangles as you can with an area of 18 square units. Then write equations that match your rectangles.

List your arrays as equations below:
\square

CHALLENGE: Use the Commutative Property to answer the following.
What is another way you could write:
$3 \times 7=21$
$6 \times 2=12$
$4 \times 10=40$

REFLECT
Directions: Reflect on what you have learned about area, arrays, and multiplication.

Omar planted two flower plots. One was 3×4 and one was 2×6. Do they have the same area? How do you know? Show your thinking in numbers and pictures in the box below.
\square

LESSON 5: AREA USING MODELS

CONNECT

Directions: Play Mystery Multiplication. Select two number cards, create an array using the two numbers as your factors, write the equation, and then find the product.

APPLY

Directions: Determine the total area of each shape.
Rectangle \#1:

Total area $=$ \qquad square units

Rectangle \#2:

Total area = \qquad square units

Rectangle \#3:

Rectangle \#4:

Rectangle \#5:

Rectangle \#6:

Total area $=$ \qquad square units
Total area =
\qquad square units
\qquad square units

Total area $=$ \qquad square units

CHALLENGE: Determine the total area of the following shapes.

REFLECT
Directions: Reflect on what you have learned about area. Then answer the following questions using words and pictures.

How would you explain area to a younger friend? Write your answer below.
\square

How do you determine the area of a rectangle? Write your answer below.
\square

When might you need to find the area of a rectangle in real life? Write your answer below.
\square

APPLY

Directions: Split the arrays below into at least 2 smaller arrays. Label the factors for each part. An example is shown below.

Example

Problem \#1

Problem \#2

Problem \#3

CONNECT
Directions: Play Mystery Multiplication. Select two number cards, create an array using the two numbers as your factors, write the equation, and then find the product.

APPLY

Directions: Break apart the arrays and, using the distributive property, write an equation to show your work.
1.

$\times \quad=\square$

$8 \times 9=$ \qquad
2.

$$
\begin{aligned}
\times & =\square \\
\times & =\square \\
\square & =\square
\end{aligned}
$$

$$
7 \times 8=
$$

3.

4.

$$
\times \ldots=\square
$$

$$
\times \quad=\square
$$

$$
\square+\square=\square
$$

$$
5 \times 10=
$$

5.

$8 \times 2=$

REFLECT
Directions: Reflect on your learning in this lesson. Answer the questions in the boxes below.

What is the Distributive Property of Multiplication? Explain it in your own words. Use drawings and numbers to explain your thinking.
\square

LESSON 1 : PERIMETER OF POLYGONS

APPLY

Part 1 Directions: For each shape below, do the following:

- Measure and record each of the side lengths of the quadrilaterals with your ruler.
- Label the units.

Part 2 Directions: Choose two shapes and do the following:

- Measure and cut a piece of string matching the total perimeter of the shape.
- Lay the string around the shape to check your measurement. It should match perfectly.

\qquad Perimeter: \qquad

REFLECT
Directions: Reflect on your learning about perimeter. Think about how you found the perimeter of the shapes today. Why is perimeter a linear measurement? Write your thoughts in the box below.
\square

 LESSON 2: PERIMETER AND AREA

APPLY

Directions: Work with your Shoulder Partner to solve the perimeter and area problems below. Your teacher will give you additional directions.

Goat Pen
4 meters

 4 meters

Chicken Pen

5 meters

\qquad
Perimeter $=$ meters

Area $=$ \qquad square meters Work Space
\qquad
Work Space

Work Space

APPLY, continued

Cattle Pen

Perimeter $=$ \qquad meters

Area = \qquad square meters

Work Space

Duck Pen

5 meters

Perimeter $=$ \qquad meters

Area $=$ \qquad square meters

Work Space

> Perimeter =
\qquad meters

Area = \qquad square meters Work Space

Sheep Pen

CHALLENGE:

1. How much fencing would you need to make ALL of these pens?
2. How many square meters of space would the animals have if you combined ALL of the pens?

REFLECT

Directions: How would you explain the difference between perimeter and area to a Primary 2 student? Write your explanation in the box below. Use numbers, pictures, and words to explain the difference.
\square

LESSON 3: AREA USING THE DIMENSIONS

APPLY

Directions: Look at the space requirements for the animals below. Then determine which pen each animal could use. Write the area of the pen and the name of the animal for each pen. Some pens might work for multiple animals.

Goat's area > 30 square meters

Chicken's area < 20 square meters

Pen \#1
6 meters

Pen \#2
6 meters

Area = \qquad square meters

Animal that can use: \qquad

Pen \#3

5 meters

\square
5 meters
Area = \qquad square meters

Animal that can use: \qquad

Pen \#4

Area = \qquad square meters

Animal that can use: \qquad

Pen \#5
7 meters

Area $=\ldots$ square meters

Animal that can use: \qquad

CHALLENGE:

Sketch a different pen for each animal. Be sure to label your pens' dimensions.

Directions: A friend said that the area of the square shown below is 8 square units. Do you agree or disagree? Explain your thinking in the box below using words, pictures, and/or numbers.
4
4

\square

APPLY

Directions: Choose two of the problems below to demonstrate strategies for finding the area of rectangles. For each problem, show TWO ways to find the area. Explain your thinking using words, pictures, and/or numbers. Remember to label all of your answers.
1.

Show your work here:

3 units
2.

6 units

Show your work here:
3. Measure this shape with a ruler and label the dimensions in centimeters.
\square
\qquad

Show your work here:

APPLY, continued
In the boxes below, answer the following questions:

1. Which strategy for finding area works best for you? Why?
\square
2. Which strategy for finding area is the most challenging for you right now? Why?
\square CONNECT
Directions: Use counters to solve the division problems below. For each problem, draw a picture to show your solution.
3. $36 \div 6=$
4. $21 \div 3=$
5. $48 \div 12=$

APPLY

Walid invited his friends over to play board games. He has 24 small square tables that he wants to arrange to make a larger rectangular table.
Part 1 Directions: In the grid below, draw as many rectangular tables as you can. Label the width and length and then write an equation to find the area and another equation to find the perimeter. One rectangular table is done for you.

Part 2 Directions: In the table below, record the dimensions, perimeter, and area of each of the rectangular tables you built.

Width (linear units)	1								
Length (linear units)	24								
Perimeter (linear units)	50								
Area (square units)	24								

CHALLENGE:

Directions: Which seating arrangement would be the best for playing games with friends? Why do you think so? Write your response in the box below. Use pictures, numbers, or words.

LESSON 6: DIFFERENT AREAS FOR THE SAME PERIMETER

Do two rectangles with the same area always have the same perimeter?
Directions: Complete the following steps.

1. Use your ruler to draw two different rectangles with an area of 6 square cm .
2. Label the side lengths of each rectangle.
3. Calculate the perimeter of each rectangle.
4. Compare the two perimeters and explain your observations using words and/or numbers.

APPLY

Directions: Complete the following steps.

1. In the space below, use your ruler to draw two different rectangles with a perimeter of 20 cm .
2. Label the side lengths of each rectangle.
3. Calculate the area of each rectangle.
4. Compare the two areas and explain your observations using words and/or numbers.

CHALLENGE:

Can you draw a different type of polygon with a perimeter of 20 cm ? (You do not have to find the area.) Use your ruler to draw as many as you can below.

REFLECT

Directions: Reflect on your learning about area and perimeter. In the box below, explain the strategy you used to solve today's Apply problem. You may use words, numbers, and/or pictures.

LESSON 7: APPLICATIONS ON PERIMETER AND AREA CONNECT

Directions: Use counters to solve the division problems below. For each problem draw a picture to show your solution.

1. $27 \div 3=$
2. $44 \div 11=$
3. $36 \div 9=$

APPLY

Part 1 Directions: Solve the story problems below. Include a drawing and an equation for each problem. Be sure to label your answers.

1. Shaimaa is sewing a border on a square baby blanket. The length of the blanket is 45 centimeters and the width is 45 centimeters. How long will the border be?
2. Farouk is building a patio out of tiles. He wants the length of the patio to be 7 tiles across and its width to be 6 tiles. How many tiles will he use in all to build the patio?
 and 1 meter wide. How much wood does she need for the trim?
3. A farmer is building a fence around his garden. If the garden is 8 meters long and 3 meters wide, how much fencing does he need to buy?
4. A rug is 3 meters long and 2 meters wide. What is the area of the rug?

Part 2 Directions: Write your own story problems. Write one perimeter story problem and one area story problem.

My Perimeter Story Problem

My Area Story Problem

Directions: Draw lines to represent the groups of 10 to help you solve the following problems.
$3 \times 70=$
$8 \times 40=$
$6 \times 90=$
$10 \times 10=$

$$
8 \times 20=
$$

\square
$7 \times 40=$
\square

$$
3 \times 50=
$$

\square

$$
4 \times 40=
$$

\square

CHALLENGE:

Think about the patterns you observed when solving the Apply problems. How can you use what you know to help you multiply 18×10 ? Explain your thinking in words, pictures, or numbers.

REFLECT

Directions: Answer the question below. Show your work in the box.

Based on what you know about multiples of 10, what would you predict would happen when you multiply a number by a multiple of 100 , such as 2×300, or 4×500 ?
\square

LESSON 1 : PATTERNS OF MULTIPLYING BY MULTIPLES OF 10

CONNECT

Directions: There is a large auditorium with 8 rows of seating. Each row has 50 chairs. Omar thinks there are 450 chairs total. Is he correct? Use words, pictures, and/or numbers to explain your thinking.

APPLY

Use the multiplication facts and patterns to find :
Example:

$2 \times 10=20$	$3 \times 10=$
$2 \times 100=200$	$3 \times 100=$
$2 \times 1000=2000$	$5 \times 1000=$
$4 \times 6=$	$5 \times 7=$
$4 \times 60=$	$5 \times 700=$
$4 \times 600=$	$5 \times 7000=$

Directions: Solve the problems below. Split the multiples of 10 into 10 and the other factor. For example, 40 has the factors 10 and 4.

Example: $8 \times 40 \quad(8 \times 4) \times 10=320$

CHALLENGE: Malek bought a box of cards. In the box there were 6 smaller boxes, and in each of those boxes there were 6 packs of 10 cards. To find the total number of cards he bought, Malek wrote this equation: $6 \times 60=360$. Is he correct? Explain how you know.

REFLECT

Directions: Reflect on your learning about multiplying by multiples of 10. In the space provided, explain the patterns you observed when multiplying a single digit by multiples of 10. Use words, pictures, and/or numbers to explain your thinking.
\square

APPLY

Group 1: Finger Trick Strategy

After you practice the strategy, draw an example below and use words to explain how to do it.

CHALLENGE: Why do you think this strategy works?

APPLY

Group 2: List of Equations Strategy

Directions: List the equations for multiplying by 9 in order. The first two have been done for you. Then record below the table what you notice about any patterns.

$9 \times 1=$	9
$9 \times 2=$	18
$9 \times 3=$	

Describe the patterns you observe. Be sure to look at the factors and the products.

CHALLENGE: What additional pattern do you observe when you add the Tens digit and Ones digit of each product (for example, $0+9$ and $1+8$)?

APPLY

Group 3: 120 Chart Strategy
Directions: Shade in all the multiples of 9 . Next to the chart, record what patterns you notice.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Describe the patterns you observe.

CHALLENGE: Record all the multiplication equations below. See if you can find products beyond those you colored in the 120 Chart.

APPLY

Group 4: Tens Facts Strategy

Directions: You can use what you know about multiplying by 10 to quickly multiply by 9 . Look at the example below. Solve and discuss each problem with your group.

$$
9 \times 6
$$

First draw a model of 10×6 and then cross out one group of 6 . Now there are 9 groups of 6 .

6	6	6	6	6	6	6	6	6

$10 \times 6=60$
$60-6=$ \qquad

CHALLENGE: A student told me that $9 \times 8=70$. They said they know that $10 \times 8=80$, so $9 \times 8=70$ because they subtracted a 10 from 80 . Are they correct? Show your thinking in the box below.
\square

LESSON 3: FACTS ON MULTIPLICATION AND ADDITION CONNECT

Directions: When your teacher gives the signal, solve as many problems as you can in 2 minutes. Use any strategy you learned in Lesson 52.
$9 \times 2=$ \qquad $4 \times 9=$ \qquad
$9 \times 10=$ \qquad
$3 \times 9=$ \qquad $9 \times 5=$ \qquad
$9 \times 9=$ \qquad
$9 \times 0=$ \qquad
$9 \times 2=$ \qquad
$9 \times 8=$ \qquad
$1 \times 9=$ \qquad
$9 \times 6=$ \qquad
$9 \times 7=$ \qquad
$9 \times 1=$ \qquad
$9 \times 2=$ \qquad
$9 \times 0=$ \qquad
$8 \times 9=$ \qquad
$6 \times 9=$ \qquad
$9 \times 10=$ \qquad
$2 \times 9=$ \qquad
$9 \times 3=$ \qquad
$4 \times 9=$ \qquad
$9 \times 0=$ \qquad

Number correctly answered: \qquad
Number incorrectly answered: \qquad
Number not answered: \qquad

Put a check mark next to the strategy you used most today.
\square Finger Trick Strategy
\square Tens Facts Strategy
List of Equations Strategy
\square Other
120 Chart Strategy

Do you think that strategy worked well for you? Why or why not?

APPLY

Problems completed: \qquad

Directions: Record the strategies you used today. If you did not have a strategy for one of the boxes, leave it blank.

ADDITION STRATEGIES	MULTIPLICATION STRATEGIES
+0	$\times 0$
+1	$\times 1$
+2	$\times 2$
+3	$\times 3$
+4	$\times 5$
+5	$\times 6$
+6	$\times 7$
+7	$\times 8$
+8	$\times 10$
+10	$\times 9$
+8	
+8	
+5	

What other strategies did you use?

LESSON 4: COMPARING AND ORDERING NUMBERS IN DIFFERENT FORMS APPLY

Directions: Solve the problem below with your partner.

Gamila said that since 9 is the digit with the largest value, the number 999 is larger than 1000. Do you agree or disagree? Why?

Directions: Solve the rest of these problems independently.

Puzzle 1:

This number has 5 Thousands, 7 Hundreds, 6 Tens, and 4 Ones. What number is it?

Puzzle 2:

This number has 12 Hundreds, 15 Tens, and 6 ones. What number is it?

Puzzle 3:

Write the following number in standard form. Pay attention to the place value.
$6,000+50,000+40+300+2=$

Puzzle 4:

Write the following number in expanded form.
$3,509=$

Puzzle 5:

Radwa ordered the following numbers from smallest to largest. What did she do incorrectly?

$$
\begin{array}{llll}
5,021 & 5,201 & 5,102 & 5,210
\end{array}
$$

Reorder the numbers correctly: \qquad , \qquad
\qquad
\qquad

Puzzle 6:

Sara compared the numbers below. What is her error?

$$
13,470<13,407
$$

Puzzle 7:

Order the following numbers from least to greatest: 50; 5; 500; 5,000; 1; 10,000; 500,000.
\qquad
\qquad
\qquad
\qquad
\qquad , \qquad

CHALLENGE:

Write at least one place value puzzle of your own for a number that has at least 4 Ten Thousands.

LESSON 5: ADDITION STRATEGIES
APPLY
Directions: Solve the addition problems below using a strategy that is efficient for you. When finished, choose two problems and double-check your answer using a different addition strategy. Rewrite the two problems in the rows at the bottom and show your work for the new strategy.

PROBLEM	WORK SPACE	SUM
$97+184$		
$483+201$		
$823+262$		
$677+233$		

DOUBLE-CHECKING USING A NEW STRATEGY		
PROBLEM	WORK SPACE	
		SUM

CHALLENGE:

1. Choose one of the problems from above and write a story problem using those numbers.
2. Choose four of the sums and find the sum of those four numbers.

REFLECT

Directions: Reflect on your learning about addition strategies. Why is it important to learn different strategies to solve addition problems? Write your thinking below and use examples to support your answer.

LESSON 6: SUBTRACTION STRATEGIES

APPLY

Directions: Solve each subtraction problem using any strategy you choose. Then write an addition problem to check your answer. The first one is an example.

SUBTRACTION PROBLEM	ADDITION PROBLEM TO CHECK
Example: $572-350=222$ Work: Number Line Place Value Picture	Example: $\begin{aligned} & 222+350=572 \\ & 200+300=500 \\ & 22+50=72 \\ & 500+72=572 \end{aligned}$
1. $780-450=$ Work:	
2. $925-610=$ Work:	

SUBTRACTION PROBLEM	ADDITION PROBLEM TO CHECK
3. $2,550-1,225=$ Work:	
4. $3,000-1,500=$ Work:	
5. 5,548-3,315 $=$ Work:	
6. 1,759-1,255 =	
Work:	

CHALLENGE:

1. Pick one of the problems from above and write a story problem using those numbers.
\square
2. Pick the largest difference from above and subtract the smallest difference.

LESSON 7: APPLICATIONS ON ADDITION AND SUBTRACTION CONNECT

Mr. Mahmoud raises chickens. In the past two years, his chickens have laid 5,350 eggs. Last year his chickens laid 2,120 eggs. How many eggs did his chickens lay two years ago? Circle the equation that represents how you might solve. Would you use addition or subtraction?
$2,120+$
\qquad $=5,350$
OR $\quad 5,350-2,120=$ \qquad
$2,120+3,000=5,120$
$5,120+200=5,320$
$5,320+30=5,350$
3,230 eggs
$5,350-2,000=3,350$
$3,350-100=3,250$
$3,250-20=3,230$
3,230 eggs

APPLY

Directions: Read each story problem and decide on a strategy to solve it. Show your work in the box below each problem. Some of the problems might have more than one step. Read carefully.

Example:

Mr. Mahmoud also raises sheep. One day he took 235 sheep out to graze on a hill. Later, his neighbor brought his sheep to the hillside to graze. Now there are 680 sheep on the hill. How many sheep did the neighbor bring to the hillside?

Practice:

1. The library can hold 2,475 books, but 525 books are out on loan and 137 books are missing. How many books are there in the library right now?
\square
2. Three boxes filled with books were just delivered to the library. If each box is filled with 215 books, how many books were delivered?
3. The librarian takes some of the new books out of the boxes. Now there are only 510 books in the boxes. How many books did the librarian take out of the boxes?
\square
4. Amir's family is saving to buy a new TV. The TV costs 4,590 LE on sale. They have saved 2,410 LE so far. How much more money do they need before they can buy the TV?
\square
5. Omar just moved to the city. He found an apartment to rent for 3,340 LE per month. Electricity and gas will cost him 692 LE per month. How much money will it cost him each month to live?
\square
6. If Omar had 5,000 LE to spend each month, how much money does he have left after he pays for rent, electricity and gas?

REFLECT

Directions: Reflect on your learning about addition and subtraction strategies and adding and subtracting large numbers. Circle the number that best describes your level of confidence solving addition and subtraction problems with large numbers at this point in the year.

1 = Adding and subtracting large numbers is still tricky for me.
5 = I am very confident solving large-number addition and subtraction problems.

1	2	3	4	5

In the box below, describe why you circled the number you did. Explain how you are feeling about these concepts. Identify what you are doing well and where you think you might still need help.

LESSON 8: CAPACITY

APPLY

Directions: Cut out the pictures below and then sort them according to whether the capacity is best measured in milliliters or liters. When you and your Shoulder Partner are finished, compare your answers. Discuss any areas of disagreement.

MILLILITERS	
LITERS	

 LESSON 9: READING THE CAPACITY

CONNECT

Directions: The picture below represents a graduated cylinder. Write your observations in the table below. Share what you notice, what the graduated cylinder reminds you of, and what you wonder.

WHAT I NOTICE	WHAT IT REMINDS ME OF	WHAT I WONDER

APPLY
Directions: Read aloud the capacity on each container. Then write the name of the container (for example, large shampoo bottle), draw a picture of it, and write its volume in the table below. Be sure to record the unit label for each measurement.

CONTAINER	PICTURE	VOLUME

CONTAINER	PICTURE	VOLUME

REFLECT

Directions: Reflect on your learning about volume. Imagine you were going to teach a Primary 2 friend everything you know about volume.

In the box below, write what you know about volume: what it is, how to find it, the units we use, how the units compare to each other, containers that use volume measurements, and so on. Use words, pictures, and/or numbers to share your thinking.
\square

Revised by
 Dr.Mohamed Mohyeldin Abdesalam Abouraia Dr. Osama Abdelazim Abdelsalam Mohamed Eman Sayed Ramadan Mohamed
 Instructional Supervision
 Dr. Akram Hassan Mohamed
 Head of the Central Administration for Curriculum Development

All Copyright is reserved to the Ministry of Education and Technical Education in the Arab Republic of Egypt.
Distribution of this book is not allowed outside the Ministry of Education and Technical Education.

